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GLOS Technology Stack 

1. Server Configuration 

a. Hardware 

GLOS currently has two ESXi virtual hosts. The first is a DELL PowerEdge R720 with two 8-Core (HT) Intel 

Xeon CPUs and 96 GB RAM. This server is fully operational and serves as the backbone for GLOS DMAC 

operations. The other virtual host is a DELL PowerEdge R710 with two 4-Core Intel Xeon CPUs and 32 GB 

RAM, used for development and load balancing. The diagram below shows a generalized view of the 

planned server structure at GLOS. The two virtual hosts on the network running VMware VSphere are 

managed and maintained through an administrative node with vCenter, which is installed on a HP 

PROLIANT DL360 with a 4-Core Intel Xeon CPU and 12 GB RAM.  vCenter offers a centralized application 

that is able to access and control multiple ESXi hosts with one interface across network. The virtual hosts 

access the GLOS datasets on the main GLOS storage appliance (DELL PowerVault MD1200 with 12 1TB 

7200K RPM SAS drives in a RAID 5 disk array) using the NFS protocol through a directly-attached DELL 

PowerEdge 2950 with two 4-Core Intel Xeon CPUs and 16 GB RAM. This NFS approach has been 

identified as a likely bottleneck for large-scale data access and GLOS DMAC team is working on a 

solution to boost the throughput.  

                                                                                                                                                                                                 

 

 

 

 

 

 

 

A table of the GLOS server/appliance specifications is provided below. All servers, including virtual 

guests, are running against RedHat Enterprise or CentOS, Linux operating system (5.X, 6.X and 7.X), 

except for the HP PROLIANT DL360, which is configured with Windows Server 2008 R2. 

  

ESXi Host 1 

ESXi Host 2 

vCenter Storage 
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Model CPU RAM Disk RAID Level OS 

DELL 
PowerdEdge 
R720 

2 X Intel Xeon 
CPU E5-26650 
@ 2.40GHz 

96GB 4 X 600GB SAS 
15k rpm 

5 ESXi 

DELL 
PowerEdge 
R710 

2 X Intel Xeon 
CPU E5520 @ 
2.27GHz 

32GB 4 X 300GB SAS 
15k rpm 

5 ESXi 

DELL 
PowerEdge 
2950 

2 X Intel Xeon 
CPU E5405 @ 
2.00GHz 

16GB 2 X 150GB SAS 
15k rpm 

1 RedHat 
Enterprise 
Linux 5.9 

HP PROLIANT 
DL360 

1 X Intel Xeon 
CPU E5606 @ 
2.13GHz 

12GB   Windows 
Server 2008 R2 

DELL 
PowerVault 
MD 1200 

n/a n/a 12 X 1TB SAS 
7.2k rpm 

5 n/a 

 

b. Network 

The GLOS network was designed and built for tolerance on high I/O throughput in order to support 

massive data transfer. A three-tier approach was adopted to address this requirement. As depicted 

below, the approach calls for a public sub-network for data access from Internet, with data and the 

management/backup sub-networks visible only within the rack space. 

 

 

With a three-tier network, the traffic can be split onto dedicated switches, thereby preventing the 

congestion and interference of a single combined network. The two local networks are linked with a 

Cisco 36-port Gigabit managed switch, and the public network has a 3Com 48-port 100Kb managed 

switch, which will be upgraded by 2016 to gigabit.  

Public Network Data Network
Backup/Management 

network
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Due to the limited numbers of public IP addresses available to GLOS servers, one virtual machine was 

configured to act as a gateway. Other virtual machines which typically conduct backend processing work 

take advantage of this software gateway for their occasional Internet access.   

c. Backup/Recovery 

Backups are made of virtual machines through a dedicated network which will not be interrupted by 

other data access I/O operations. Snapshots are currently taken manually with Veeam; by November 

2015, GLOS will deploy Veeam Enterprise and additional hardware to support automated daily 

snapshots as well as failover. 

d. Monitoring 

GLOS relies on metrics collected through monitoring software to monitor and track the performance of 

the hardware, software and network. The collected information is used for planning or other purposes 

that depend on reliable, continuous data harvesting. Munin is the tool GLOS currently uses to view and 

chart server metrics. It gives administrators near real-time charting on various parameters that are vital 

for the operation of hardware and software. For example, the chart below, shows a high I/O wait on 

CPU usage. This indicates a very heavy I/O operation was conducted during that period and we would 

expect to see a similar pattern on the chart of disk IO or network traffic. 
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The next plot shows disk I/O per second and confirms that heavy I/O operations were performed on the 

local disk array. More specifically, there was a huge delay on I/O write; by backtracking down the line, 

the original cause can be discovered. 

 

 

With this capacity, the administrator at GLOS can not only monitor the performance of servers visually, 

but conduct troubleshooting more efficiently as well. However, Munin does have some limitations, so 

Zabbix will be deployed by December 2015 to complement Munin. Zabbix is an open-source enterprise 

monitoring solution that offers a dashboard-like GUI to conduct not only monitoring but near real-time 

notification/alert through triggers as well. 

e. Operating System/Software 

GLOS relies heavily on open source software. Almost all operating systems are Linux: GLOS has RHEL 5.9, 

CentOS 6.6 and CentOS 7.1 deployed on either virtual or physical machines. These operating systems 

offer good performance, community-supported documentation and extensive knowledge bases. More 

importantly, GLOS has virtually unlimited access to thousands of free open-source software packages 

built for the Linux ecosystem.  Among these are Apache and nginx web servers, Tomcat application 

server, and MySQL and PostgreSQL databases, which underlie the mainstream application packages on 

GLOS servers. GLOS also has deployed the Unicorn python http server, Ruby on Rails, and MongoDB as 

for certain applications that were developed to meet specific demands.  

GLOS also recognizes the benefits of using Microsoft Windows servers onboard for certain tasks which 

could be tackled more efficiently using a GUI environment, such as ESXi administration through 
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vClient/vCenter. GLOS has a diverse and robust OS/software environment that is capable to meet the 

challenges of data management. GLOS OS and key software are tabulated per host below: 

Hostname OS Virtual 
machine 

Role Application 
Environment/Server/Database 

process1.glos.us CentOS 7.1 Yes Hosting backend 
scripts for data 
harvesting, data 
consolidation, data 
delivery 

 C 
 Lua 
 Python 
 Java 
 Scala 

gateway.glos.us CentOS 6.6 Yes Software gateway 
for backend 
machines accessing 
Internet 

 

db1.glos.us CentOS 6.6 Yes PostgreSQL 
Database Server 

 PostgreSQL 
 PostGIS 

 

db2.glos.us CentOS 6.6 Yes MySQL Database 
Server 

 MySQL/MariaDB 

gn25.glos.us CentOS 6.6 Yes JEE container  Tomcat 7 
 IOOS 52n SOS 
 GeoNetwork 

thredds.glos.us CentOS 6.6 Yes JEE container  Tomcat 7 
 THREDDS 

wms.glos.us CentOS 6.6 Yes Multiple roles: 
sci-wms,  
baseX database  

 Python virtualenv 
 Python Gunicorn HTTP 

server 
 BaseX Nosql Database 

 

web1.glos.us CentOS 6.6 Yes Web Application 
Server 

 Python virtualenv 
 Python Gunicorn HTTP 

server 

web2.glos.us CentOS 6.6 Yes Web Application 
Server, Drupal 

 LAMP 
 

 

glos.us RHEL 5.9 No Multiple roles: 
Web Application 
Server 
FTP Server 
NFS Server 
Database Server 

 LAMP 
 GLOS Portal 
 Ruby on Rail 
 vsftpd 
 nfsd 
 PostgreSQL 
 MySQL 

back.glos.us Window 
Server 2008 
R2 

No Management 
Console 

 vSphere vClient 
 vShpere vCenter 
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GLOS is currently working on the migration of applications and databases from the physical host 

“glos.us” onto virtual hosts. This task will be completed by the end of 2015. 

f. Data File Structure on File System 

GLOS stores and archives observation, remote sensing and numeric model data in any flat file format on 

a dedicated disk array that is directly attached with a server to offer data read (NFS) and write (scp) 

services for various applications. There are currently 6 TB of storage on the file system. A self-

explanatory file structure is maintained for easier management and faster data retrieval, with top-level 

directories on the file system are named after the datasets as listed below: 

Directory Name Data Collection/Time Span Format Size 

Bathymetry Great Lakes bathymetry NetCDF Overall 1.1GB 

GLCFS Great Lakes Coastal 
Forecasting System, 
including nowcast, 
forecasting for the current 
year and archival from 2006 
to current.  

NetCDF Overall 4.3TB 
Nowcast current 
year: 28G 
Forecast current 
year: 394G 
Nowcast Archival: 
547G 
Forecast Archival: 
3.4T 

glider Data collected through 
glider operation around 
Great Lakes 

NetCDF 844MB 

GLOP Great Lakes Optical 
Properties in 2014 

NetCDF 3.8MB 

GLSEA Great Lakes Surface 
Environmental Analysis 
data from 2008 to current 

tif 5.0GB 

HABS Water quality in-situ data 
on Lake Erie  

NetCDF 7.7MB 

HECWFS Huron Erie Corridor Way 
Forecasting System from 
2010 to current 

NetCDF/shp Overall 814GB 
Nowcast: 185G 
Forecast: 536G 
Archive: 50G 
Shp file: 44G 

MTRI-CDOM Colored dissolved organic 
matter data from 2013 to 
current 

NetCDF 453MB 

MTRI-CHL Lake Surface Chlorophyll 
data from 2013 to current 

NetCDF 470MB 

MTRI-DOC Dissolved Organic Carbon 
data from 2013 to current 

NetCDF 425MB 

MTRI-LST Lake Surface Temperature 
from 2013 to current 

NetCDF 35GB 
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MTRI-NC Natural Color Imagery from 
2013 to current 

NetCDF 776MB 

MTRI-Ranger3 Ranger 3 ferry observation 
data in 2013 

NetCDF 17MB 

MTRI-SM Suspended Minerals in 
2013 

NetCDF 455MB 

SLRFVCOM St. Lawrence River FVCOM 
Forecasting System from 
2012 to current 

NetCDF/shp Overall 810GB 
Nowcast: 69G 
Forecast: 738G 
Shp file: 3.2G 

USACE-WaterLevel USACE Water Level report 
from 2014 to current 

NetCDF 1.7MB 

 

At the sub-directory level, data are organized either by the type of data or the geographic extent. For 

example, the Great Lakes Forecasting System (GLCFS) has a sub-directory structure: 

 Archive   

 Forecast   

 Forecast-archive   

 Nowcast 

GLCFS data are generated on daily basis, new data are pushed in to Nowcast and Forecast folder for 

immediate access. By the end of the calendar year, these data then will be moved to an Archive folder 

by year for nowcast data and to a forecast-archive folder. Since the sub-directory structure on the 

second level can’t distinguish the geographic extent of data without checking the metadata or 

coordinates inside the files, a naming convention/coding schema on the individual file level is 

maintained. For instance, in the name “e201513000.out3.nc”, the first letter ‘e’, which indicates Lake 

Erie, and the following digits represent the initial date for the model time period in the file. Date/time is 

represented in a format YYYYDOY (year and the day of the year). ‘out3’ means this is the output for the 

3 dimensional model.  The complete naming conventions are as follows: 

 ‘e’: Lake Erie 

‘h’: Lake Huron 

‘m’: Lake Michigan 

‘o’: Lake Ontario 

‘s’: Lake Superior 

‘in1’: forcing data (input) 

‘out1’: 2 dimensional model output 

‘out3’: 3 dimensional model output 
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Other numeric models, such as HECWFS and SLRFVCOM, have the same sub-directory structure as 

GLCFS. However, since they are running at a localized level, all of the naming conventions are applied 

except for the leading letter, which is not necessary for a model that is running on a specific geographic 

extent. The top level directory is sufficient to indicate the spatial extent. 

There are also datasets organized by geographic extent directly at the sub-directory level. For example, 

the USACE water level data has a secondary folder structure: 

 GreatLakesWaterLevels   

 LakeErieWaterLevels   

 LakeOntarioWaterLevels   

 LakesMichiganandHuronWaterLevels   

 LakeSt.ClairWaterLevels   

 LakeSuperiorWaterLevels 

The directory structure on the GLOS disk array is determined not only by the nature of the data, such as 

spatial extent, update cycle, data format, but application demand as well. Some datasets, such as water 

quality data (HABS) were created to serve specific application requirements. 

g. Backend Scripts 

There are three types of scripts that exist inside GLOS DMAC: 

1. Data/metadata harvest, consolidation, and persistence; 

2. Status and performance monitoring on scripts and applications; 

3. Data/metadata processing and preparation for applications or data archival; 

Data/metadata harvest and processing is one of the fundamental tasks of GLOS DMAC. The functions 

provided by these scripts drive the entire GLOS' data infrastructure. In an ideal world, data are all 

written in standard formats and follow standard protocols. Therefore, a single suite of scripts should be 

able to handle all data related tasks. Unfortunately, this is not the case. Most data that GLOS collects 

come from divers scientific/research fields, which makes it yet more difficult to enforce standards and 

protocols due to the uncertainty and complexity of disparate, complex research topics. In this context, 

scripts might have to be written for every individual dataset, which is obviously not desirable for any 

data management task. In order to avoid reinventing the wheel again and again during programming, 

the common features for data harvest/process tasks from these scripts have been extracted and 

compiled into separate libraries for further maintenance and development in a more coordinated 

approach. 

Python and bash are the primary scripts for the GLOS backend script because they are flexible and 

versatile. C and Java are also on the stack of programming languages for handling more complicated 

tasks that require performance over flexibility. If a tool is developed primarily in C or Java, it usually has 

Python, bash or a Lua wrapper on top as the glue to bind the C or Java components together. 
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Most GLOS scripts are on a schedule using Linux cron jobs. A migration effort is currently under way to 

centralize all scripts onto one or two virtual machines equipped with all necessary environments and 

dedicated for running backend scripts. Processed data are pushed by these scripts to either GLOS 

storage or to the databases that serve various applications that need data access. 

Key GLOS scripts are listed in the table below: 

Script Name Main Programming Language Purpose 

metadown Python Metadata harvesting and 
compilation from GLOS 
THREDDS 

sensor-web-harvester Scala Populate GLOS IOOS 52n SOS 
server with GLOS buoy data 

swh-metadata-iso.sh Bash/Scala/Python Metadata harvesting and 
compilation from GLOS IOOS 
52n SOS 

glos_obs Java Populate GLOS observation 
database with buoy data from 
NOAAPORT and GLOS FTP 

water_levels Python Parsing USACE water level 
report from PDF to NetCDF 

obs2nc C/Lua Convert observation data to 
NetCDF format file that is NCEI 
compliant 

obs2habs C/Lua Convert observation data to 
NetCDF format to serve HABs 
portal 

glcfs_thredds Python Harvesting GLCFS model output 

hecwfs.py Python Harvesting HECWFS model 
output 

slrfvm.py Python Harvesting SLR FVCOM model 
output 

Obscan PHP Buoy data update check 

Status PHP Data harvesting job status 
check 

glsea.py Python Harvesting GLSEA output 

Slrfvm C Convert SLRFVCOM model 
output from NetCDF to shp file 

mtri-img.sh Bash Populate GLOS storage with 
remote sensing data residing on 
GLOS FTP 

 

Data flows to GLOS using either push or pull mode. Data from GLOS sponsored projects, such as 

observation data and remote sensing data, are using push mode. A password protected FTP site was set 

up to accept the data from GLOS partners. For example, GLOS currently has 36 buoys that have data 

actively pushed onto FTP. In order to coordinate data collection effort, an XML schema was defined for 
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buoy data contributors. This schema is widely adopted in the Great Lakes Region and supported through 

the software from buoy manufacturers. 

The schema is defined as follows: 

1. XML  Schema 
 

<station>Station Name</station> 

 <date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC -- > 

 <met>  

<!—envelop for the observation data -- > 

 </met> 

 

2. XML Tags 
 

Note: This is a current list as of this version of the Enrollment Guide. Please check the GLOS website 

to obtain an update or contact GLOS DMAC staff (Guan Wang, gwang@glc.org) to establish new tags 

that accommodate your data. 

<wdir1>  Wind Direction  

<wspd1>  Wind Speed 

<gust1>   Wind Gust 

<atmp1>   Air Temperature 

<wtmp1>  Water Temperature 

<rh1>   Relative Humidity 

<dewpt1>  Dew Point 

<baro1>   Air pressure 

<wvhgt>   Significant Wave Height 

<dompd>  Wave Period 

<mwdir>  Wave Direction 

<dp###>  Depth in Water for Nodes on a Thermal String (e.g., dp001, dp002, etc.) 

mailto:gwang@glc.org
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<tp###> Water Temperature for Nodes on a Thermal String (last three digits correspond 

with the matching dp### value) 

3. Enclosure Structures 
 

Single timestamp format: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<message>  <!—envelop for  obs data for a timestamp  -

- > 

 <!—XML Schema for Data -->  

<station>Station Name</station> 

 <date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC 

-- > 

 <met>  

<!—envelop for the real data -- > 

 </met> 

</message> 

 

Multiple timestamp format: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<messages> <!—envelop for obs data for multiple timestamp  -

- > 

<message> 

<!—XML Schema for Data -->  

<station>Station Name</station> 

<date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC 

-- > 

<met>  

<!—envelope for the real data -- > 

  </met> 
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</message> 

<message> 

<!—XML Schema for Data -->  

<station>Station Name</station> 

<date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC 

-- > 

<met>  

<!—envelope for the real data -- > 

</met> 

</message> 

</messages> 

 

Below are samples of GLOS Observation Data in XML format: 

1. Thermistor string-equipped buoy, single timestamp 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<message> 

<station>45025</station> 

<date>06/22/2011 22:40:00</date> 

<met> 

<wdir1>64.92</wdir1> 

<wspd1>10.25</wspd1> 

<gust1>13.2</gust1> 

<atmp1>7.979001</atmp1> 

<wtmp1>8.8</wtmp1> 

<rh1>97.8</rh1> 

<dewpt1>7.650001</dewpt1> 
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<baro1>1002</baro1> 

<wvhgt>1.487</wvhgt> 

<dompd>7.014001</dompd> 

<mwdir>22.59</mwdir> 

<dp001>4</dp001> 

<tp001>8.729999</tp001> 

<dp002>6</dp002> 

<tp002>8.74</tp002> 

<dp003>9</dp003> 

<tp003>9.66</tp003> 

<dp004>11</dp004> 

<tp004>8.61</tp004> 

<dp005>13</dp005> 

<tp005>8.45</tp005> 

<dp006>15</dp006> 

<tp006>7.857</tp006> 

<dp007>17</dp007> 

<tp007>8.61</tp007> 

<dp008>19</dp008> 

<tp008>8.82</tp008> 

</met> 

</message> 

 

2. Thermistor string-equipped buoy, multiple timestamps 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<messages> 

<message> 
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<station>45025</station> 

<date>06/22/2011 22:40:00</date> 

<met> 

<wdir1>64.92</wdir1>  

<wspd1>10.25</wspd1> 

<gust1>13.2</gust1> 

<atmp1>7.979001</atmp1> 

<wtmp1>8.8</wtmp1> 

<rh1>97.8</rh1> 

<dewpt1>7.650001</dewpt1> 

<baro1>1002</baro1> 

<wvhgt>1.487</wvhgt> 

<dompd>7.014001</dompd> 

<mwdir>22.59</mwdir> 

<dp001>4</dp001> 

<tp001>8.729999</tp001> 

<dp002>6</dp002> 

<tp002>8.74</tp002> 

<dp003>9</dp003> 

<tp003>9.66</tp003> 

<dp004>11</dp004> 

<tp004>8.61</tp004> 

<dp005>13</dp005> 

<tp005>8.45</tp005> 

<dp006>15</dp006> 

<tp006>7.857</tp006> 

<dp007>17</dp007> 
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<tp007>8.61</tp007> 

<dp008>19</dp008> 

<tp008>8.82</tp008> 

</met> 

</message> 

<message> 

<station>45025</station> 

<date>06/22/2011 22:50:00</date> 

<met> 

<wdir1>64.92</wdir1>  

<wspd1>10.25</wspd1> 

<gust1>13.2</gust1> 

<atmp1>7.979001</atmp1> 

<wtmp1>8.8</wtmp1> 

<rh1>97.8</rh1> 

<dewpt1>7.650001</dewpt1> 

<baro1>1002</baro1> 

<wvhgt>1.487</wvhgt> 

<dompd>7.014001</dompd> 

<mwdir>22.59</mwdir> 

<dp001>4</dp001> 

<tp001>8.729999</tp001> 

<dp002>6</dp002> 

<tp002>8.74</tp002> 

<dp003>9</dp003> 

<tp003>9.66</tp003> 

<dp004>11</dp004> 
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<tp004>8.61</tp004> 

<dp005>13</dp005> 

<tp005>8.45</tp005> 

<dp006>15</dp006> 

<tp006>7.857</tp006> 

<dp007>17</dp007> 

<tp007>8.61</tp007> 

<dp008>19</dp008> 

<tp008>8.82</tp008> 

</met> 

</message> 

</messages> 

Once the observation data arrive at GLOS via FTP, they are picked up by the Java package glos_obs. This 

acts as an adaptor between data in XML format and the GLOS observation database. The package is 

comprised of two major components: an XML data parser and a database injector. The parser scans the 

FTP folders, analyzes the structure of theXML files, and extracts validated records into java pojo. Then 

the java pojo collection is passed to database injector, which prepares and inserts observation data into 

the database. Before the XML file is removed from FTP, a copy of the file is transferred to a separate 

folder where the sensor-web-harvester package scans the data and populates GLOS IOOS 52n SOS. 

The metadata record is as important as the data itself in order to make data discoverable. GLOS' 

smetadata search is powered by BaseX, which is populated using a Metadown package and swh-

metadata-iso package. Metadown harvests the metadata records on GLOS THREDDS through the ncISO 

service, and Swh-metadata-iso exports the metadata record from GLOS IOOS 52n SOS. The generated 

xml metadata records then populate the BaseX database. The diagram below shows this procedure for 

updating a metadata record through swh-metadata-iso. 
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NetCDF is a very popular format that is widely accepted by the IOOS community. Manipulating data in 

NetCDF format is a common task for many data related operations. However, the official NetCDF 

libraries only support C and Java. There are community editions of Python port NetCDF library, but GLOS 

has identified compatibility issues that prevented us using it for certain scenarios. The NetCDF C library, 

on the other hand, is a native library that is able to work through every aspect of NetCDF.  

Compared as a system level programming language with Python, C has difficulty handling string/text. 

Therefore, an auxiliary scripting tool, Lua, which can work with C seamlessly, is used to address the gap. 

For instance, GLOS has a package called obs2nc which was developed for converting observation data 

from the GLOS observation database to NCEI-compliant NetCDF for long term archival purpose. The 

entire NetCDF creation routine was done using C, but the configuration and metadata population for 

buoys was developed in Lua. The processed information handled by Lua is used as feed to drive the 

routines written in C. By using Lua on top of C, a balance between performance and flexibility can be 

found.  

Below is an example of the definition of a GLOS buoy in Lua. It’s human-friendly and can be maintained 

and populated by staff who may only a limited understanding of programming: 

Platform={ 

    id="45167", 

    title="NOAA_RSC_A", 

    lon=-80.14, 

    lat=42.19, 

    summary="Regional Science Consortium buoy", 

    keywords="GLOS,Regional Science Consortium,Lake Erie", 

sensors={ 

    sea_surface_water_temperature={ 

            standard_name="sea_water_temperature", 

            long_name="sea water temperature at surface", 

            featureType="timeSeries", 

            units="degree_Celsius", 

            source="platform/45167/45167_sea_surface_water_temp", 

            depth=0.0, 
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            keywords="EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > SEA SURFACE 

TEMPERATURE", 

            keywords_vocabulary="GCMD Earth Science Keywords. Version 5.3.3", 

            validator=function(val) 

                          if val>100 or val<-10 then 

                              return false 

                          else 

                              return true 

                          end 

                      end 

        }, 

        sea_water_temperature={ 

            standard_name="sea_water_temperature", 

            long_name="Thermistor water temperature", 

            featureType="timeSeriesProfile", 

            units="degree_Celsius", 

            source="platform/45167/45167_sea_water_temp", 

            keywords="EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE", 

            keywords_vocabulary="GCMD Earth Science Keywords. Version 5.3.3", 

            comment="", 

            validator=function(val) 

                          if val>100 or val<-10 then 

                              return false 

                          else 

                              return true 

                          end 
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                      end 

        }, 

        …. …. 

    } 

}  

From this snippet of Lua code, it can be observed that its table structure can define all necessary 

components for describing a NCEI-compliant buoy. The QA/QC procedure, “validator”, can be included 

in the table and then invoked in a C routine. 

GLOS DMAC operations heavily rely on automated script tools for data management. By taking 

advantage of various programming languages and existing tools, GLOS keeps a robust and flexible script 

suite that is capable to handle all kinds of data driven tasks. 

 

 

 


