

1

GLOS Technology Stack

1. Server Configuration

a. Hardware

GLOS currently has two ESXi virtual hosts. The first is a DELL PowerEdge R720 with two 8-Core (HT) Intel

Xeon CPUs and 96 GB RAM. This server is fully operational and serves as the backbone for GLOS DMAC

operations. The other virtual host is a DELL PowerEdge R710 with two 4-Core Intel Xeon CPUs and 32 GB

RAM, used for development and load balancing. The diagram below shows a generalized view of the

planned server structure at GLOS. The two virtual hosts on the network running VMware VSphere are

managed and maintained through an administrative node with vCenter, which is installed on a HP

PROLIANT DL360 with a 4-Core Intel Xeon CPU and 12 GB RAM. vCenter offers a centralized application

that is able to access and control multiple ESXi hosts with one interface across network. The virtual hosts

access the GLOS datasets on the main GLOS storage appliance (DELL PowerVault MD1200 with 12 1TB

7200K RPM SAS drives in a RAID 5 disk array) using the NFS protocol through a directly-attached DELL

PowerEdge 2950 with two 4-Core Intel Xeon CPUs and 16 GB RAM. This NFS approach has been

identified as a likely bottleneck for large-scale data access and GLOS DMAC team is working on a

solution to boost the throughput.

A table of the GLOS server/appliance specifications is provided below. All servers, including virtual

guests, are running against RedHat Enterprise or CentOS, Linux operating system (5.X, 6.X and 7.X),

except for the HP PROLIANT DL360, which is configured with Windows Server 2008 R2.

ESXi Host 1

ESXi Host 2

vCenter Storage

2

Model CPU RAM Disk RAID Level OS

DELL
PowerdEdge
R720

2 X Intel Xeon
CPU E5-26650
@ 2.40GHz

96GB 4 X 600GB SAS
15k rpm

5 ESXi

DELL
PowerEdge
R710

2 X Intel Xeon
CPU E5520 @
2.27GHz

32GB 4 X 300GB SAS
15k rpm

5 ESXi

DELL
PowerEdge
2950

2 X Intel Xeon
CPU E5405 @
2.00GHz

16GB 2 X 150GB SAS
15k rpm

1 RedHat
Enterprise
Linux 5.9

HP PROLIANT
DL360

1 X Intel Xeon
CPU E5606 @
2.13GHz

12GB Windows
Server 2008 R2

DELL
PowerVault
MD 1200

n/a n/a 12 X 1TB SAS
7.2k rpm

5 n/a

b. Network

The GLOS network was designed and built for tolerance on high I/O throughput in order to support

massive data transfer. A three-tier approach was adopted to address this requirement. As depicted

below, the approach calls for a public sub-network for data access from Internet, with data and the

management/backup sub-networks visible only within the rack space.

With a three-tier network, the traffic can be split onto dedicated switches, thereby preventing the

congestion and interference of a single combined network. The two local networks are linked with a

Cisco 36-port Gigabit managed switch, and the public network has a 3Com 48-port 100Kb managed

switch, which will be upgraded by 2016 to gigabit.

Public Network Data Network
Backup/Management

network

3

Due to the limited numbers of public IP addresses available to GLOS servers, one virtual machine was

configured to act as a gateway. Other virtual machines which typically conduct backend processing work

take advantage of this software gateway for their occasional Internet access.

c. Backup/Recovery

Backups are made of virtual machines through a dedicated network which will not be interrupted by

other data access I/O operations. Snapshots are currently taken manually with Veeam; by November

2015, GLOS will deploy Veeam Enterprise and additional hardware to support automated daily

snapshots as well as failover.

d. Monitoring

GLOS relies on metrics collected through monitoring software to monitor and track the performance of

the hardware, software and network. The collected information is used for planning or other purposes

that depend on reliable, continuous data harvesting. Munin is the tool GLOS currently uses to view and

chart server metrics. It gives administrators near real-time charting on various parameters that are vital

for the operation of hardware and software. For example, the chart below, shows a high I/O wait on

CPU usage. This indicates a very heavy I/O operation was conducted during that period and we would

expect to see a similar pattern on the chart of disk IO or network traffic.

4

The next plot shows disk I/O per second and confirms that heavy I/O operations were performed on the

local disk array. More specifically, there was a huge delay on I/O write; by backtracking down the line,

the original cause can be discovered.

With this capacity, the administrator at GLOS can not only monitor the performance of servers visually,

but conduct troubleshooting more efficiently as well. However, Munin does have some limitations, so

Zabbix will be deployed by December 2015 to complement Munin. Zabbix is an open-source enterprise

monitoring solution that offers a dashboard-like GUI to conduct not only monitoring but near real-time

notification/alert through triggers as well.

e. Operating System/Software

GLOS relies heavily on open source software. Almost all operating systems are Linux: GLOS has RHEL 5.9,

CentOS 6.6 and CentOS 7.1 deployed on either virtual or physical machines. These operating systems

offer good performance, community-supported documentation and extensive knowledge bases. More

importantly, GLOS has virtually unlimited access to thousands of free open-source software packages

built for the Linux ecosystem. Among these are Apache and nginx web servers, Tomcat application

server, and MySQL and PostgreSQL databases, which underlie the mainstream application packages on

GLOS servers. GLOS also has deployed the Unicorn python http server, Ruby on Rails, and MongoDB as

for certain applications that were developed to meet specific demands.

GLOS also recognizes the benefits of using Microsoft Windows servers onboard for certain tasks which

could be tackled more efficiently using a GUI environment, such as ESXi administration through

5

vClient/vCenter. GLOS has a diverse and robust OS/software environment that is capable to meet the

challenges of data management. GLOS OS and key software are tabulated per host below:

Hostname OS Virtual
machine

Role Application
Environment/Server/Database

process1.glos.us CentOS 7.1 Yes Hosting backend
scripts for data
harvesting, data
consolidation, data
delivery

 C
 Lua
 Python
 Java
 Scala

gateway.glos.us CentOS 6.6 Yes Software gateway
for backend
machines accessing
Internet

db1.glos.us CentOS 6.6 Yes PostgreSQL
Database Server

 PostgreSQL
 PostGIS

db2.glos.us CentOS 6.6 Yes MySQL Database
Server

 MySQL/MariaDB

gn25.glos.us CentOS 6.6 Yes JEE container  Tomcat 7
 IOOS 52n SOS
 GeoNetwork

thredds.glos.us CentOS 6.6 Yes JEE container  Tomcat 7
 THREDDS

wms.glos.us CentOS 6.6 Yes Multiple roles:
sci-wms,
baseX database

 Python virtualenv
 Python Gunicorn HTTP

server
 BaseX Nosql Database

web1.glos.us CentOS 6.6 Yes Web Application
Server

 Python virtualenv
 Python Gunicorn HTTP

server

web2.glos.us CentOS 6.6 Yes Web Application
Server, Drupal

 LAMP

glos.us RHEL 5.9 No Multiple roles:
Web Application
Server
FTP Server
NFS Server
Database Server

 LAMP
 GLOS Portal
 Ruby on Rail
 vsftpd
 nfsd
 PostgreSQL
 MySQL

back.glos.us Window
Server 2008
R2

No Management
Console

 vSphere vClient
 vShpere vCenter

6

GLOS is currently working on the migration of applications and databases from the physical host

“glos.us” onto virtual hosts. This task will be completed by the end of 2015.

f. Data File Structure on File System

GLOS stores and archives observation, remote sensing and numeric model data in any flat file format on

a dedicated disk array that is directly attached with a server to offer data read (NFS) and write (scp)

services for various applications. There are currently 6 TB of storage on the file system. A self-

explanatory file structure is maintained for easier management and faster data retrieval, with top-level

directories on the file system are named after the datasets as listed below:

Directory Name Data Collection/Time Span Format Size

Bathymetry Great Lakes bathymetry NetCDF Overall 1.1GB

GLCFS Great Lakes Coastal
Forecasting System,
including nowcast,
forecasting for the current
year and archival from 2006
to current.

NetCDF Overall 4.3TB
Nowcast current
year: 28G
Forecast current
year: 394G
Nowcast Archival:
547G
Forecast Archival:
3.4T

glider Data collected through
glider operation around
Great Lakes

NetCDF 844MB

GLOP Great Lakes Optical
Properties in 2014

NetCDF 3.8MB

GLSEA Great Lakes Surface
Environmental Analysis
data from 2008 to current

tif 5.0GB

HABS Water quality in-situ data
on Lake Erie

NetCDF 7.7MB

HECWFS Huron Erie Corridor Way
Forecasting System from
2010 to current

NetCDF/shp Overall 814GB
Nowcast: 185G
Forecast: 536G
Archive: 50G
Shp file: 44G

MTRI-CDOM Colored dissolved organic
matter data from 2013 to
current

NetCDF 453MB

MTRI-CHL Lake Surface Chlorophyll
data from 2013 to current

NetCDF 470MB

MTRI-DOC Dissolved Organic Carbon
data from 2013 to current

NetCDF 425MB

MTRI-LST Lake Surface Temperature
from 2013 to current

NetCDF 35GB

7

MTRI-NC Natural Color Imagery from
2013 to current

NetCDF 776MB

MTRI-Ranger3 Ranger 3 ferry observation
data in 2013

NetCDF 17MB

MTRI-SM Suspended Minerals in
2013

NetCDF 455MB

SLRFVCOM St. Lawrence River FVCOM
Forecasting System from
2012 to current

NetCDF/shp Overall 810GB
Nowcast: 69G
Forecast: 738G
Shp file: 3.2G

USACE-WaterLevel USACE Water Level report
from 2014 to current

NetCDF 1.7MB

At the sub-directory level, data are organized either by the type of data or the geographic extent. For

example, the Great Lakes Forecasting System (GLCFS) has a sub-directory structure:

 Archive

 Forecast

 Forecast-archive

 Nowcast

GLCFS data are generated on daily basis, new data are pushed in to Nowcast and Forecast folder for

immediate access. By the end of the calendar year, these data then will be moved to an Archive folder

by year for nowcast data and to a forecast-archive folder. Since the sub-directory structure on the

second level can’t distinguish the geographic extent of data without checking the metadata or

coordinates inside the files, a naming convention/coding schema on the individual file level is

maintained. For instance, in the name “e201513000.out3.nc”, the first letter ‘e’, which indicates Lake

Erie, and the following digits represent the initial date for the model time period in the file. Date/time is

represented in a format YYYYDOY (year and the day of the year). ‘out3’ means this is the output for the

3 dimensional model. The complete naming conventions are as follows:

 ‘e’: Lake Erie

‘h’: Lake Huron

‘m’: Lake Michigan

‘o’: Lake Ontario

‘s’: Lake Superior

‘in1’: forcing data (input)

‘out1’: 2 dimensional model output

‘out3’: 3 dimensional model output

8

Other numeric models, such as HECWFS and SLRFVCOM, have the same sub-directory structure as

GLCFS. However, since they are running at a localized level, all of the naming conventions are applied

except for the leading letter, which is not necessary for a model that is running on a specific geographic

extent. The top level directory is sufficient to indicate the spatial extent.

There are also datasets organized by geographic extent directly at the sub-directory level. For example,

the USACE water level data has a secondary folder structure:

 GreatLakesWaterLevels

 LakeErieWaterLevels

 LakeOntarioWaterLevels

 LakesMichiganandHuronWaterLevels

 LakeSt.ClairWaterLevels

 LakeSuperiorWaterLevels

The directory structure on the GLOS disk array is determined not only by the nature of the data, such as

spatial extent, update cycle, data format, but application demand as well. Some datasets, such as water

quality data (HABS) were created to serve specific application requirements.

g. Backend Scripts

There are three types of scripts that exist inside GLOS DMAC:

1. Data/metadata harvest, consolidation, and persistence;

2. Status and performance monitoring on scripts and applications;

3. Data/metadata processing and preparation for applications or data archival;

Data/metadata harvest and processing is one of the fundamental tasks of GLOS DMAC. The functions

provided by these scripts drive the entire GLOS' data infrastructure. In an ideal world, data are all

written in standard formats and follow standard protocols. Therefore, a single suite of scripts should be

able to handle all data related tasks. Unfortunately, this is not the case. Most data that GLOS collects

come from divers scientific/research fields, which makes it yet more difficult to enforce standards and

protocols due to the uncertainty and complexity of disparate, complex research topics. In this context,

scripts might have to be written for every individual dataset, which is obviously not desirable for any

data management task. In order to avoid reinventing the wheel again and again during programming,

the common features for data harvest/process tasks from these scripts have been extracted and

compiled into separate libraries for further maintenance and development in a more coordinated

approach.

Python and bash are the primary scripts for the GLOS backend script because they are flexible and

versatile. C and Java are also on the stack of programming languages for handling more complicated

tasks that require performance over flexibility. If a tool is developed primarily in C or Java, it usually has

Python, bash or a Lua wrapper on top as the glue to bind the C or Java components together.

9

Most GLOS scripts are on a schedule using Linux cron jobs. A migration effort is currently under way to

centralize all scripts onto one or two virtual machines equipped with all necessary environments and

dedicated for running backend scripts. Processed data are pushed by these scripts to either GLOS

storage or to the databases that serve various applications that need data access.

Key GLOS scripts are listed in the table below:

Script Name Main Programming Language Purpose

metadown Python Metadata harvesting and
compilation from GLOS
THREDDS

sensor-web-harvester Scala Populate GLOS IOOS 52n SOS
server with GLOS buoy data

swh-metadata-iso.sh Bash/Scala/Python Metadata harvesting and
compilation from GLOS IOOS
52n SOS

glos_obs Java Populate GLOS observation
database with buoy data from
NOAAPORT and GLOS FTP

water_levels Python Parsing USACE water level
report from PDF to NetCDF

obs2nc C/Lua Convert observation data to
NetCDF format file that is NCEI
compliant

obs2habs C/Lua Convert observation data to
NetCDF format to serve HABs
portal

glcfs_thredds Python Harvesting GLCFS model output

hecwfs.py Python Harvesting HECWFS model
output

slrfvm.py Python Harvesting SLR FVCOM model
output

Obscan PHP Buoy data update check

Status PHP Data harvesting job status
check

glsea.py Python Harvesting GLSEA output

Slrfvm C Convert SLRFVCOM model
output from NetCDF to shp file

mtri-img.sh Bash Populate GLOS storage with
remote sensing data residing on
GLOS FTP

Data flows to GLOS using either push or pull mode. Data from GLOS sponsored projects, such as

observation data and remote sensing data, are using push mode. A password protected FTP site was set

up to accept the data from GLOS partners. For example, GLOS currently has 36 buoys that have data

actively pushed onto FTP. In order to coordinate data collection effort, an XML schema was defined for

10

buoy data contributors. This schema is widely adopted in the Great Lakes Region and supported through

the software from buoy manufacturers.

The schema is defined as follows:

1. XML Schema

<station>Station Name</station>

 <date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC -- >

 <met>

<!—envelop for the observation data -- >

 </met>

2. XML Tags

Note: This is a current list as of this version of the Enrollment Guide. Please check the GLOS website

to obtain an update or contact GLOS DMAC staff (Guan Wang, gwang@glc.org) to establish new tags

that accommodate your data.

<wdir1> Wind Direction

<wspd1> Wind Speed

<gust1> Wind Gust

<atmp1> Air Temperature

<wtmp1> Water Temperature

<rh1> Relative Humidity

<dewpt1> Dew Point

<baro1> Air pressure

<wvhgt> Significant Wave Height

<dompd> Wave Period

<mwdir> Wave Direction

<dp###> Depth in Water for Nodes on a Thermal String (e.g., dp001, dp002, etc.)

mailto:gwang@glc.org

11

<tp###> Water Temperature for Nodes on a Thermal String (last three digits correspond

with the matching dp### value)

3. Enclosure Structures

Single timestamp format:

<?xml version="1.0" encoding="ISO-8859-1"?>

<message> <!—envelop for obs data for a timestamp -

- >

 <!—XML Schema for Data -->

<station>Station Name</station>

 <date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC

-- >

 <met>

<!—envelop for the real data -- >

 </met>

</message>

Multiple timestamp format:

<?xml version="1.0" encoding="ISO-8859-1"?>

<messages> <!—envelop for obs data for multiple timestamp -

- >

<message>

<!—XML Schema for Data -->

<station>Station Name</station>

<date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC

-- >

<met>

<!—envelope for the real data -- >

 </met>

12

</message>

<message>

<!—XML Schema for Data -->

<station>Station Name</station>

<date>MM/DD/YYYY HH:MM:SS</date> <!—Timestamp must be UTC

-- >

<met>

<!—envelope for the real data -- >

</met>

</message>

</messages>

Below are samples of GLOS Observation Data in XML format:

1. Thermistor string-equipped buoy, single timestamp

<?xml version="1.0" encoding="ISO-8859-1"?>

<message>

<station>45025</station>

<date>06/22/2011 22:40:00</date>

<met>

<wdir1>64.92</wdir1>

<wspd1>10.25</wspd1>

<gust1>13.2</gust1>

<atmp1>7.979001</atmp1>

<wtmp1>8.8</wtmp1>

<rh1>97.8</rh1>

<dewpt1>7.650001</dewpt1>

13

<baro1>1002</baro1>

<wvhgt>1.487</wvhgt>

<dompd>7.014001</dompd>

<mwdir>22.59</mwdir>

<dp001>4</dp001>

<tp001>8.729999</tp001>

<dp002>6</dp002>

<tp002>8.74</tp002>

<dp003>9</dp003>

<tp003>9.66</tp003>

<dp004>11</dp004>

<tp004>8.61</tp004>

<dp005>13</dp005>

<tp005>8.45</tp005>

<dp006>15</dp006>

<tp006>7.857</tp006>

<dp007>17</dp007>

<tp007>8.61</tp007>

<dp008>19</dp008>

<tp008>8.82</tp008>

</met>

</message>

2. Thermistor string-equipped buoy, multiple timestamps

<?xml version="1.0" encoding="ISO-8859-1"?>

<messages>

<message>

14

<station>45025</station>

<date>06/22/2011 22:40:00</date>

<met>

<wdir1>64.92</wdir1>

<wspd1>10.25</wspd1>

<gust1>13.2</gust1>

<atmp1>7.979001</atmp1>

<wtmp1>8.8</wtmp1>

<rh1>97.8</rh1>

<dewpt1>7.650001</dewpt1>

<baro1>1002</baro1>

<wvhgt>1.487</wvhgt>

<dompd>7.014001</dompd>

<mwdir>22.59</mwdir>

<dp001>4</dp001>

<tp001>8.729999</tp001>

<dp002>6</dp002>

<tp002>8.74</tp002>

<dp003>9</dp003>

<tp003>9.66</tp003>

<dp004>11</dp004>

<tp004>8.61</tp004>

<dp005>13</dp005>

<tp005>8.45</tp005>

<dp006>15</dp006>

<tp006>7.857</tp006>

<dp007>17</dp007>

15

<tp007>8.61</tp007>

<dp008>19</dp008>

<tp008>8.82</tp008>

</met>

</message>

<message>

<station>45025</station>

<date>06/22/2011 22:50:00</date>

<met>

<wdir1>64.92</wdir1>

<wspd1>10.25</wspd1>

<gust1>13.2</gust1>

<atmp1>7.979001</atmp1>

<wtmp1>8.8</wtmp1>

<rh1>97.8</rh1>

<dewpt1>7.650001</dewpt1>

<baro1>1002</baro1>

<wvhgt>1.487</wvhgt>

<dompd>7.014001</dompd>

<mwdir>22.59</mwdir>

<dp001>4</dp001>

<tp001>8.729999</tp001>

<dp002>6</dp002>

<tp002>8.74</tp002>

<dp003>9</dp003>

<tp003>9.66</tp003>

<dp004>11</dp004>

16

<tp004>8.61</tp004>

<dp005>13</dp005>

<tp005>8.45</tp005>

<dp006>15</dp006>

<tp006>7.857</tp006>

<dp007>17</dp007>

<tp007>8.61</tp007>

<dp008>19</dp008>

<tp008>8.82</tp008>

</met>

</message>

</messages>

Once the observation data arrive at GLOS via FTP, they are picked up by the Java package glos_obs. This

acts as an adaptor between data in XML format and the GLOS observation database. The package is

comprised of two major components: an XML data parser and a database injector. The parser scans the

FTP folders, analyzes the structure of theXML files, and extracts validated records into java pojo. Then

the java pojo collection is passed to database injector, which prepares and inserts observation data into

the database. Before the XML file is removed from FTP, a copy of the file is transferred to a separate

folder where the sensor-web-harvester package scans the data and populates GLOS IOOS 52n SOS.

The metadata record is as important as the data itself in order to make data discoverable. GLOS'

smetadata search is powered by BaseX, which is populated using a Metadown package and swh-

metadata-iso package. Metadown harvests the metadata records on GLOS THREDDS through the ncISO

service, and Swh-metadata-iso exports the metadata record from GLOS IOOS 52n SOS. The generated

xml metadata records then populate the BaseX database. The diagram below shows this procedure for

updating a metadata record through swh-metadata-iso.

sensor-metadata-iso

IOOS 52n SOS

sensor-web-

harvester
H2

db

populate_up

date.py

BaseX

17

NetCDF is a very popular format that is widely accepted by the IOOS community. Manipulating data in

NetCDF format is a common task for many data related operations. However, the official NetCDF

libraries only support C and Java. There are community editions of Python port NetCDF library, but GLOS

has identified compatibility issues that prevented us using it for certain scenarios. The NetCDF C library,

on the other hand, is a native library that is able to work through every aspect of NetCDF.

Compared as a system level programming language with Python, C has difficulty handling string/text.

Therefore, an auxiliary scripting tool, Lua, which can work with C seamlessly, is used to address the gap.

For instance, GLOS has a package called obs2nc which was developed for converting observation data

from the GLOS observation database to NCEI-compliant NetCDF for long term archival purpose. The

entire NetCDF creation routine was done using C, but the configuration and metadata population for

buoys was developed in Lua. The processed information handled by Lua is used as feed to drive the

routines written in C. By using Lua on top of C, a balance between performance and flexibility can be

found.

Below is an example of the definition of a GLOS buoy in Lua. It’s human-friendly and can be maintained

and populated by staff who may only a limited understanding of programming:

Platform={

 id="45167",

 title="NOAA_RSC_A",

 lon=-80.14,

 lat=42.19,

 summary="Regional Science Consortium buoy",

 keywords="GLOS,Regional Science Consortium,Lake Erie",

sensors={

 sea_surface_water_temperature={

 standard_name="sea_water_temperature",

 long_name="sea water temperature at surface",

 featureType="timeSeries",

 units="degree_Celsius",

 source="platform/45167/45167_sea_surface_water_temp",

 depth=0.0,

18

 keywords="EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > SEA SURFACE

TEMPERATURE",

 keywords_vocabulary="GCMD Earth Science Keywords. Version 5.3.3",

 validator=function(val)

 if val>100 or val<-10 then

 return false

 else

 return true

 end

 end

 },

 sea_water_temperature={

 standard_name="sea_water_temperature",

 long_name="Thermistor water temperature",

 featureType="timeSeriesProfile",

 units="degree_Celsius",

 source="platform/45167/45167_sea_water_temp",

 keywords="EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE",

 keywords_vocabulary="GCMD Earth Science Keywords. Version 5.3.3",

 comment="",

 validator=function(val)

 if val>100 or val<-10 then

 return false

 else

 return true

 end

19

 end

 },

 …. ….

 }

}

From this snippet of Lua code, it can be observed that its table structure can define all necessary

components for describing a NCEI-compliant buoy. The QA/QC procedure, “validator”, can be included

in the table and then invoked in a C routine.

GLOS DMAC operations heavily rely on automated script tools for data management. By taking

advantage of various programming languages and existing tools, GLOS keeps a robust and flexible script

suite that is capable to handle all kinds of data driven tasks.

